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Abstract- In Part I of this paper the effect of a stenosis on the steady Row through a tube was 
considered. In Part II the effect of unsteadiness is investigated experimentally using the same 
axisymmetric and nonsymmetric models. Oscillating flow, with and without a steady compon- 
ent, was utilized and the pressure drop was determined as a function of several parameters. 
An approximate equation for predicting the pressure drop across a stenosis is developed, and 
verified experimentally. It is shown that three dimensionless parameters can be used to charac- 
terize the unsteady flow in a stenosis. 

Hot-film measurements were used to investigate the development of turbulence and it was 
found that the oscillating flow was more stable than the corresponding steady flow for mild 
constrictions. For the severely constricted models the oscillating flow was slightly less stable 
than for steady flow. 

1. INTRODUCTION 

THE APPLICABILITY of steady-flow tests to 
problems related to arterial blood flow is 
questionable since blood flow is distinctly 
pulsatile. In Part II of this paper the influence 
of unsteadiness on the flow through locally 
constricted tubes is considered. Three of the 
model stenoses described in Part I were used 
in the test program and the same hydro- 
dynamic factors are considered, i.e. pressure 
drop, flow separation, and the development of 
turbulence. Due to the general complexity of 
unsteady flow the primary quantitative results 
are limited to pressure-drop characteristics, 
although both separation and turbulence 
phenomena were studied and are discussed. 

To make the problem more tractable, har- 
monically oscillating flow, superimposed on a 
steady flow, was used in the experiments. 
Although the wave form for blood flow is not 
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harmonic, the results obtained with this 
simpler type of flow reveal the salient differ- 
ences between steady and unsteady flow in 
constricted tubes. 

2. THEORETICAL CONSIDERATIONS 

Unsteadyflow in a straight tube 
One of the simplest unsteady-flow problems 

of practical interest is that of harmonically 
oscillating laminar flow in a long tube of 
constant cross section containing a Newtonian 
incompressible fluid. An exact solution to this 
problem can be obtained from the Navier- 
Stokes equations and the results of this 
solution are readily available in the literature 
(see for example, Wormersley, 1955). Experi- 
mental verification of the theoretical solution 
has been obtained by Linford and Ryan (1955). 
The equations for the velocity distribution 
and the pressure gradient for a given flow rate 
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are rather complicated and are commonly 
expressed in terms of Bessel functions. How- 
ever, a very accurate approximation to the 
exact solution can be made which is parti- 
cularly useful in giving a physical interpreta- 
tion to the problem. Schiinfeld (1949) has 
shown that at relatively low oscillation fre- 
quencies the pressure drop Ap over a length L 
can be predicted from the equation 

(1) 

where p is the fluid viscosity, p the fluid 
density, D the tube dia., U the average instan- 
taneous velocity, and dU ldt the time rate of 
change of the average velocity. The first term 
on the right side of equation (1) is the pres- 
sure drop due to viscous effects in steady flow 
and the second term is the additional pres- 
sure force required to accelerate the fluid. 
For the straight tube problem the parameter 
used as an index of the ratio of inertial to 
viscous effects is CL = R,&& where R,, is 
the tube radius, w the angular frequency of the 
oscillation, and v the kinematic viscosity. 
Equation (1) is in good agreement with the 
exact solution for cy < 3. Fry et al. (19.56, 
1959) modified equation (1) to read 

Uf (1.1) PLdt’ dU (2) 

where the constants l-6 and 1-l were deter- 
mined empirically to give good agreement 
between experimental measurements and 
equation (2) in the study of aortic blood flow. 

If equation (1) is written in the form 

(3) 

the coefficients C, and C, can be calculated 
from the exact solution so that both the am- 
plitude and phase angle between Ap and U is 
accurately predicted from equation (3). 
These calculated values are shown in Fig. 1 
as a function of 01. The values of C, and C, in 
equation (2) are approximately equal to the 
values obtained from the graph for OL = 7. 

5.01 
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Fig. 1. Variation of coefficients C, and C, with a for 
oscillating flow in a straight tube. 

Although C, increases rapidly for large values 
of (Y the amplitude of Ap is dependent primar- 
ily on the inertia term for 01 > 10, and varia- 
tions in C, are only important if an accurate 
prediction of the phase angle is required. 
Similarly for small OL the pressure drop 
depends primarily on C,; the value of C, is 
relatively unimportant except for the phase 
relationship. 

Momentum analysis 
Although an analytical solution for the 

problem of unsteady flow in a constricted 
tube is not available due to the nonlinear 
nature of the flow and the turbulence which 
commonly develops near the constriction, a 
momentum analysis is useful for focusing 
attention on the various factors which enter 
the problem. A similar analysis was used by 
Daily et al. (1956) in their study of transient 
(but not oscillating) flow through orifices. 

Consider a tube containing a constriction 
as shown in Fig. 2. Application of the linear 
momentum equation to the dashed control 
volume gives 

x pur’ dA - 
I 

pu12 dA +-$ 
I 

pu dV, (4) 
.4 0 V 
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Fig. 2. Control volume for constricted tube. 

where Fb is the resultant force exerted on the 
control volume by boundary forces, u is the 
local velocity in the z-direction, and V is the 
volume of fluid within the control volume. It is 
now assumed that sections 1 and 2 are suffi- 
ciently far away from the constriction so that 
U, = rt, and the first two integrals on the right 
side of equation (4) cancel. The pressure 
integrals are expressed as 

where Ap represents the difference in the 
average pressure intensity at sections 1 and 2. 
Also the last integral can be written as 

PudC’=PLa 
dt 

= PLA, %, 

where Q is the instantaneous discharge, 

Q=j udA, 
-4 

and U is the mean velocity in the unobstruc- 
ted tube, i.e. 

u=-$ 
0 

With these assumptions and simplifications 
equation (4) can be written as 

The boundary resistance term Fb contains 
the influence of viscosity, turbulence, and the 
pressure drag (added mass effect) due to the 
accelerated flow past the boundary. It is 
expected that this latter effect is proportional 
to the acceleration; and the influence of vis- 
cosity and turbulence to be closely related to 
that for steady flow. Thus, as a fist approxi- 
mation the boundary resistance is written as 

Fb- dU 

Ao 
- hpsf+kPLdr 

where Ap, is the corresponding steady-flow 
pressure drop and k is some form of added 
mass coefficient. Thus, equation (5) can be 
written as 

dU 

Finally, if the form of the equation developed 
in Part I for the steady-flow pressure drop is 
used it follows that 

Ap= K”g 

xplf-JlU+K,pL~ / (6) 

when the coefficient K, has absorbed the 
added mass effect plus any correction to the 
viscous-turbulence terms that are propor- 
tional to dU ldt. Equation (6) for a straight 
tube reduces to the form of equation (3). 

For the type of flow under consideration it 
is assumed that the instantaneous mean 
velocity can be expressed as 

u = US-+- U,f (i), (7) 

where US is the steady component of velocity, 
I/, the peak unsteady component, f = t/~ and 
T is a characteristic time. The function f(Y) 
is assumed to be of a form such that the 
maximum values for both f(f) and dfldi are 



550 DONALD F. YOUNG and FRANK Y. TSAI 

equal to unity. Equation (6) can now be writ- 
ten in the dimensionless form 

where LJ, is the maximum velocity in the 
unobstructed tube (Up = US+ U,), u = 
U/U, and Re, is the peak Reynolds number, 

PDU,IP. 
The relative importance of the three terms 

on the right side of equation (8) can be deduced 
by comparing the coefficients of the dimen- 
sionless variables r/, loI 0 and df ldl (all of 
which have maximum values of unity). These 
coefficients are denoted as I,, It and I,, i.e. 

I” = 2 (index of viscous effects), (9) P 

I, = Z$ 9 - 1 * (index of turbulence effects), 
[ 1 1 

I ll = $$-$ (index of inertial effects). (11) 
P 

As noted in Part I the coefficient K, is strongly 
dependent on the stenosis geometry (see 
Table 3, Part I). The coefficient Kt is approxi- 
mately equal to unity, and for estimating 
orders of magnitude can be set equal to one. 
Also, K, is expected to be of the order of 
unity. 

The three parameters I,, I, and I, can be 
used to estimate the relative importance of the 
various factors which contribute to the pres- 
sure drop in a stenosis. For example, in a 
severely constricted stenosis, It can easily be 
much larger than either I, or I, and the prob- 
lem becomes a quasi-steady one in which the 
second term on the right side of equation (6) 
controls the pressure drop. For a mild steno- 
sis with a highly accelerated flow ( U JT large), 

I, can dominate and the pressure drop is due 
primarily to inertial effects. These parameters 
will be used in analyzing the experimental 
results described in the following sections. 

For an oscillating flow in a straight tube 
(I, = 0), the important dimensionless ratio 
becomes ZJZ,,, which is proportional to 01~ 
with T = l/o. Thus, it is common practice to 
characterize oscillating flow in a pipe with the 
parameter a; i.e. for OL small, viscous effects 
are dominant and the flow is quasi-steady 
whereas for CY large, inertial effects are 
dominant. Although this single parameter is 
suitable for flow in unobstructed tubes it is 
clear for constricted tubes a single parameter 
will not suffice because of the additional 
parameter I,. 

3. EXPERIMENTAL APPARATUS AND 
PROCEDURES 

Three of the model stenoses from the steady- 
flow tests were used in the unsteady flow 
tests. In particular, axisymmetric models 
M-l (56 per cent stenosis) and M-2 (89 per 
cent stenosis) were used to investigate the 
effect of area ratio, and the nonsymmetric 
model M-S (89 per cent stenosis) was used 
to study the effect of shape. The detailed 
description of these models is given in Table 1 
of Part I. 

The oscillating flow was generated by a 
piston-cylinder combination driven by a 
scotch-yoke mechanism. This apparatus com- 
bined with a steady-flow system similar to 
that used for the steady-flow tests made it 
possible to generate a harmonically oscillating 
flow superimposed on a steady flow compon- 
ent (see Fig. 3a). The scotch-yoke mechanism 
was driven by a variable-speed drive and was 
operated in a range of angular frequencies of 
about 5 rad/sec. The amplitude of the stroke 
could also be varied, and two different ampli- 
tudes were used in the tests. A general 
schematic of the flow system is shown in Fig. 
3b. With valves A and B closed, the flow 
produced by the piston was a harmonic oscil- 
lation and the instantaneous flow rate could be 
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Table I. Summary of test program 

551 

Test series Fluid Models 
Kange df values for 

designation used 10 II* l”t 

IS Saline M-l 0.1-0.4 0.8 2.3- 17.0 
2s M-2 0. j-2.2 32.7 2.1-15.2 
3s M-5 0.9-4.8 32.7 ?.2- 19.4 
IGS Glycerol- M-l 1.8-8.7 0.8 2.9- 19.2 

saline 
2GS M-2 12.1-44.5 32.7 3.0-15.6 
3GS M-5 22.3-98.7 32.7 26-19.9 

*With K, = 1.0. 
*With T = l/wand K, = 1.0. 

Temperature 
controller 

Electromagnetic 

Fig. 3. Schematic of experimental apparatus. 

obtained from a measurement of the piston 
position, the height of the oscillating vertical 
column of fluid at D, or from an in-line electro- 
magnetic flowmeter (Biotronex Model BL- 
6 10) installed in the tube as shown. The flow- 
meter was calibrated immediately prior to the 
recording of data through the measurement of 
the oscillating column of fluid, and subse- 
quently used for the instantaneous flow 
measurement. 

In the test program two different fluids were 
used: physiological saline, and a glycerol- 
saline mixture (7 1 per cent glycerol by weight). 
The use of these two fluids made it possible to 
obtain a wide range in viscosity. Sodium 
chloride was added to the glycerol solutions 
to make them electrically conducting, and thus 

suitable for use with the electromagnetic 
flowmeter. 

The pressure drop acrosS the constricted 
tube was measured with two Statham P23Db 
pressure transducers whose outputs were 
electronically subtracted to give the instan- 
taneous pressure drop. The transducers were 
connected to the same pressure ports used for 
the steady flow test by means of relatively 
short flexible connecting lines. The response 
characteristics of the flowmeter and pressure 
transducers were checked by taking measure- 
ments on a straight-tube test section and 
comparing the experimental data with the 
results predicted theoretically. The results 
were found to be in good agreement. 

An attempt was made to Study separation 
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phenomena by dye injections similar to the 
procedure used in the steady-flow tests. Due 
to the transient nature of the flow meaningful 
visual observations were difficult to make. 
Some exploratory work was done using high- 
speed photography, but interpretations of the 
complex flow patterns remained difficult and 
no quantitative results were obtained. How- 
ever, a discussion of some of the qualitative 
features of the observed separation pheno- 
mena is given in a later section. Hot-film 
probes were used in a manner similar to that 
for the steady-flow tests to study the initiation 
of turbulence, and measurements were made 
at two locations downstream from the throat 
of the constriction (z/Z,, = 1 and 4). 

_ 

In planning the experimental program an 
attempt was made to cover a wide range of 
values for the parameters I,, I, and I,. Table 1 
gives a summary of the test program. For a 
given test series with a particular model and 
fluid the frequency o was held constant and 
the steady-flow component II, was varied 
from zero to its maximum value. The ampli- 
tude of the oscillating component U, remained 
essentially constant for a given series. This 
procedure was repeated for a second value of 
U,. It was not possible to hold I, constant 
while varying I, since both depended on U, 
(o and U,, could not be varied sufficiently to 
hold I, constant with large variations in U,). 

~. i_ .., _-..a _ . .- ------ .-. 

.:_I ,. +__ -._. A_ : ,._ .--- !. 

(a) Average velocity U (b) Pressure drop. Ap 

(c) Hoi-film probe at z/lo* I (dl Hot- film probe of t/Z0 *4 

Fig. 4. Typical experimental recordings. 

4. RESULTS 

Pressure drop 
A typical set of data for a given run is shown A typical pressure-drop wave form is shown 

in Fig. 4. All data were recorded on a multi- in Fig. 5a for U = U, cos wt. The theoretically 
channel strip-chart recorder. The upper trace predicted pressure drop from equation (6) 
gives the velocity U as a function of time as with K, = 1-O is also shown in Fig. 5a. 
recorded from the flowmeter. The trace Immediately below in Fig. 5b is shown the 
immediately below the flowmeter recording is contribution of the various components in 
the corresponding pressure drop across the equation (6). Although equation (6) is based on 
constriction and the last two traces are hot- a very simplified analysis it does a reasonably 
film recordings at two downstream locations. good job of predicting the pressure drop-not 
Each test series designated in Table 1 con- only the peak values but the general shape of 
sisted of 20-25 runs of this type. The flatten- the wave form as illustrated in Figs. 5a and 6, 
ing of the pressure-drop curve at two points in which several typical curves are shown. 
during a cycle as shown in Fig. 4b is not an Differences between predicted and observed 
anomaly but is, in fact, predicted by the non- peak pressure drops were about 20 per cent or 
linear term in equation (6). less. By adjusting the coefficients K,, Kt and 
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Fig. 5. Pressure-drop wave forms for model M-5 (U, = 0; 
Re, = 76). 

K, this agreement could be considerably 
improved as discussed below. 

For the tests with the severe constrictions 
(M-2 and M-5) the pressure drop is due 
primarily to viscous and turbulence effects 
(I, + ZJ + I, and the problem is approximately 
quasi-steady. In this case the pressure drop is 
essentially in phase with the discharge as 
shown in Figs. 5a and 6b. A plot of the peak 
pressure drop which occurs during a cycle (in 
dimensionless form) versus the peak Reynolds 
number is shown in Figs. 7 and 8 for all tests 
run with models M-2 and M-5. Some of the 
plotted points represent multiple data points 
which essentially fall on top of one another. In 
general, the pressure drop is slightly lower for 
unsteady flow than for steady flow in this 
quasi-steady regime. It appears that although 
inertial effects are small, the development of 
separation and turbulence is delayed so that 

I 

3-O’- Experimental 

2. 0 r 1 
I 

l-Ok A, Fmmtionffi) 
I I ----’ -’ ,-’ \\I 

Model M-l I 
U, -0 Se~=1830 I 

2or 

/ 

1 Ewer~mentol 

Fig. 6. Pressure-drop wave forms for models M-l and 
M-2. 

I 
Symbol E*p?rmental 

rclqe on /, 

flow coefficients 

lo!--+ 10 4 1 d8IW / 2 I 16arca 2 4 j 6 8 II IC,CCO 

Reynolds number, Re, 

Fig. 7. Dimensionless peak pressure-drop versus peak 
Reynolds number for model M-2. 

the resulting pressure drop is lower. For 
model M-2 it was found that if the coefficients 
K, and K, were reduced by about 10 per cent, 
an improved overall fit was obtained as shown 
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Model M-5 

Symbol Enpenmental 
range on Iu 

flow coefficients 

,D I II/l I iI11 I ‘!I 
IO 2 168100 2 4 681cco 2 4 6 810,wo 

Reynolds number. Re, 

Fig. 8. Dimensionless peak pressure drop versus peak 
Reynolds number for model M-5. 

in Fig. 7. For model M-5 a plot with K, and Kt 
reduced by 20 per cent is shown in Fig. 8. The 
relative insensitivity of the peak pressure drop 
on the inertial term for these severely con- 
stricted models is illustrated in Fig. 7. 

For the tests with the milder constriction 
(model M-l) inertial effects are important and 
for some of these tests I, P (I, + Z,) and iner- 
tial effects are dominant. In this case, as 
predicted from equation (6), the dimensionless 
peak pressure drop will be a linear function of 
the parameter I,. A plot of these data for M-l 
for which Z&Z,+ ZJ > 3 is shown in Fig. 9. 
Clearly a straight line having a slope of unity 
gives a good fit to these data. The intercept of 
the curve is approximately 1.2 which suggests 
that added mass effects plus variations in the 
flow patterns, which are functions of the 
acceleration, cause an increase in the coeffi- 
cient K, to 1.2 for model M-l. It should be 
emphasized that this coefficient is a function 
of stenosis geometry. 

For those cases in which viscous, turbu- 
lence, and inertial effects are all important the 
pressure drop, for a given geometry, can be 
expressed as a function of the peak Reynolds 
number Re, and I, as shown in Fig. 10. 
Although in general the pressure drop will 
also depend on iJ,IiJ,, the effect of this 
ratio is negligible for all tests run (0 < US/ 
CJ, < 2.4). For the curves shown in Fig. 10 
the range of values of I, (for K, = 1-O) are 
given on the figure. The solid lines plotted in 

I I I I I I 
1 2 4 6 8 10 2 

LU” w 

4’ 

Fig. 9. Dimensionless peak pressure drop versus inertial 
parameter I, for model Xl- 1. 

10 2 4 681ol 2 6 6al-m 2 1 6 810,000 

Reynolds number. Re, 

Fig. 10. Dimensionless peak pressure drop versus peak 
Reynolds number for model MI- 1. 

Fig. 10 are obtained from equation (6) with 
K, = 1.2 and indicate the excellent agreement 
between this equation and the experimental 
data. 

The results of this test program indicate 
that the parameters I,, II and I, can be used to 
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determine the various flow regimes which may 
be encountered in the unsteady flow in a 
stenosis. Furthermore, equation (6) can be 
used to estimate the pressure drop for a given 
discharge with the coefficients K, and K, 
obtained from steady-flow tests and K, set 
equal to unity. The experiments have shown 
that these coefficients can be modified to 
obtain better agreement between theory and 
experiment. However, a precise evaluation of 
the coefficients will be difficult, since they are 
expected to be dependent on geometry, 
Reynolds number, U,l U, and I,. 

Separation 
In the steady-flow tests described in Part I 

it was observed that as the Reynolds number 
exceeded some critical value, separation of 
the main stream from the boundary occurred 
and a localized zone of fluid containing a 
slowly recirculating mass of fluid could be 
detected. The same general phenomenon was 
observed in the unsteady-flow tests. However, 
for unsteady flow the quantitative description 
of the separation phenomenon is considerably 
more difficult to obtain since the position of 
separation and reattachments points are time 
dependent. Also, due to inertial effects, there 
is a phase difference between velocities at the 
same cross section so that at certain times dur- 
ing a cycle the velocity near the wall and in the 
central portion of the tube have different 
directions. This type of flow reversal is not 
considered as flow separation, which is gener- 
ally thought of as a localized effect in which 
the flow reversal occurs over a limited length 
of the tube. And outside this localized region 
the flow near the wall is unidirectional. The 
combination of the general flow reversal 
induced by inertial effects and the localized 
flow reversal due to the convective accelera- 
tion induced by the constriction make it diffi- 
cult to clearly delineate the separated flow 
regime. Although the results of these tests 
revealed that under certain conditions local- 
ized separated regions of flow existed for the 
unsteady flows, reliable quantitative data 

could not be obtained using visual observation. 
It appears that this aspect of the problem will 
require a more elaborate flow visualization 
scheme using high-speed photography. 

Twbufence 
To study the development of turbulence in 

the vicinity of the stenosis hot-film probes 
were inserted at two downstream locations 
(z/Z, = 1; z/Z, = 4). For flows which are 
laminar the output voltage from the hot-film, 
which can be related to the velocity, is smooth- 
ly varying as shown in the recordings of Figs. 
1 la, b and 12a. Since the output voltage is 
dependent on the magnitude of the velocity 
and not the direction the signals recorded are 
“rectified”, and even with reversed flow the 
voltage does not change sign. It was also 
observed that the output signal for the hot- 
films never returned to the zero velocity base- 
line (indicated with a zero on the recordings) 
during a cycle even for reversed flow. Although 
not well understood it is thought that this 
anomalous behavior is due to some character- 
istic of hot-film probes when operating near 
the zero velocity point in an oscillating flow 
field. 

Turbulence, or at least a highly disturbed 
flow, was initiated as some critical set of flow 
conditions was attained as illustrated in Figs. 
llc and 12b. For some tests the flow was 
laminar over part of the cycle, became tur- 
bulent, with a subsequent return to laminar 
flow. This sequence of events can be clearly 
seen in Figs. 1 lc and 12b. As in steady flow it 
is difficult to determine accurately the critical 
Reynolds number for the initiation of turbu- 
lence since it is not known where along the 
tube turbulence first starts. Also, it is expected 
that the critical Reynolds number is dependent 
on the nature of the unsteadiness, as charac- 
terized by I, and the ratio fJ,/U,. Some 
exploratory tests indicated that the radial 
position of the probe did not strongly influence 
the results. 

For model M-l turbulence was first detec- 
ted at the probe position z/Z, = 1. However, 
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Fig. 11. Typical hot-film recordings. 

for the more severely constricted models, 
M-2 and M-5, turbulence was first detected at 
the downstream probe position, z/Z, = 4 as 
shown in Fig. 12. These results are consistent 
with those obtained in the steady flow tests. 
The “jetting” of the flow as it comes through a 
severely constricted model can be discerned 
in Fig. 12a where the velocity at the centerline 
is higher when the flow is in the downstream 
direction (flow from throat of constriction 
toward probe) than for the upstream direction, 
even though US = 0. Further downstream at 
z/Z, = 4 the ‘jetting’ has disappeared as shown 
in Fig. 12b. 

Reynolds numbers at which turbulence was 
first detected are tabulated in Table 2. These 

Table 2. Critical Reynolds numbers 

Critical Re, for 
Unsteady flow steady flow 

Turbulence 
Model Re, observed I, Transi- Turbu- 

tion lence 

M-l 2330 No 10.4 300 500 
3500 Yes 4.6 

M-2 164 No 5.3 300 350 
323 Yes 4.9 

M-5 120 No 76 140 200 
173 Yes 2.6 

data were obtained by examining a series of 
hot-film recordings and noting where the 
voltage first appeared to fluctuate significantly. 
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Fig. 12. Hot-film recordings for model M-2 at two downstream locations. 

turbulence appears to be initiated at a 
Reynolds number that is about the same, or 
slightly lower than the steady flow value. 

From a set of such recordings it was possible 
to determine a Reynolds number below which 
turbulence was not observed and above which 
turbulence was observed and thus bracket the 
critical Reynolds number. These limiting 
values are shown in Table 2 along with the 
corresponding vaiues obtained in the steady- 
flow tests. Although no attempt was made to 
determine the effect of I, on the critical 
Reynolds number corresponding values of I, 
are included in the table. For model M-l it 
appears that the initiation of turbulence is 
retarded by the pulsating flow. This result is 
consistent with observations in straight tubes 

5. SUMMARY 

In the summary of Part I the results of the 
steady-flow tests were discussed with parti- 
cular attention given to those hydrodynamic 
factors believed to have the greatest medical 
significance. This procedure is also followed 
here. It is to be noted that many of the results 
obtained from the steady flow tests are valid 
for unsteady flow but significant differences 
also exist. 

(see, for example, Sarpkaya, 1966). In the (1) For unsteady flow in a constricted tube the 
straight tube studies the influence of LY and three basic regimes of flow noted in steady 
U,/ US on the transition Reynolds number was flow are still discernible, i.e. laminar uni- 
considered and it was found for moderate directional flow, separated laminar flow, 
values of 01 and U,/U, the critical Reynolds and turbulent flow. However, for an un- 
number was increased. Also, Gerrard (197 1) steady flow the existence of the various 
found for pulsating turbulent flows in straight regimes is time-dependent and all three 
tubes that acceleration reduced the turbulent may be observed during one cycle of flow. 
intensity but deceleration increased it. For the (2) It was found that the pressure drop across 
severely constricted models (M-2, M-5) a stenosis could be approximated by the 
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(3) 

(4) 

relationship 

where the coefficients K, and Kt were 
obtained from the steady-flow tests and 
K, = 1-O. Values of the peak pressure 
drop predicted on this basis agreed within 
about 20 per cent of the corresponding 
experimentally determined values for all 
tests. A much better agreement could be 
obtained with some empirical adjustments 
of the coefficients. In general it appears 
that K, and Kt are reduced by the un- 
steadiness whereas K, is greater than 
unity. A similar equation (equation 3) can 
be used for oscillating flow in a straight 
tube with C, and C, obtained from Fig. 1. 
Localized zones of separated flow were 
observed for the oscillating flows with 
time-dependent separation and reattach- 
ment points. However, quantitative results 
could not be obtained using visual observa- 
tions. 
As the instantaneous Reynolds number 
increased during a cycle turbulence was 
observed if the Reynolds number exceeded 
a certain critical value. For Reynolds 
numbers slightly above this critical value 
the flow becomes turbulent and then 
returns to the laminar flow state prior to 
the beginning of the next cyclic increase in 
the Reynolds number. For the mildly 
constricted model (M-l) the critical 
Reynolds number was considerably 
larger than the corresponding value for 
steady flow. For the more severely con- 
stricted models the critical Reynolds 
numbers for steady and unsteady flow 
were comparable although lower for the 
unsteady flow (see Table 2). The down- 
stream location at which the turbulence is 
initiated is strongly dependent on geo- 
metry. 

(5) 

(6) 

As was the case for steady flows the 
specific stenosis geometry is important in 
the quantitative prediction of flow charac- 
teristics. However, the more general 
qualitative aspects of the flow are inde- 
pendent of specific geometry. Equation 
(6) was found to be suitable for both the 
axisymmetric and nonsymmetric models. 
An analysis of equation (6) indicates that 
the unsteady flow can be characterized by 
the following three dimensionless para- 
meters: 

64 

(b) 

(cl 

These 

1, is an index of purely viscous effects 
and K, is strongly dependent on steno- 
sis geometry. For an order of magni- 
tude analysis the steady flow value of 
K, can be used. 
It is an index of the importance of the 
nonlinear term in equation (6). Its 
presence is due to the convective 
acceleration which leads to flow 
separation and large turbulence losses. 
I, is an index of inertial effects. The 
ratio U,/T represents the peak acceler- 
ation a, so that I, = L a,lUp2 and the 
inverse of this parameter is sometimes 
referred to as an acceleration number. 
parameters can be used to estimate the 

relative importance of viscous effects, separa- 

I.=2 
P 

I=!‘40 1‘) 
1 

[ 1 
-_ 

2 A, (with Kt = 1.0) 

1, = s (with K, = 1.0) 
‘“P 

tion and turbulence, and unsteadiness. 

Acknowledgmenrs-The authors would like to thank 
Brian E. Morgan and Lawrence A. Davis, Jr. for their 
assistance in obtaining the experimental data, and Dr. 
Thomas R. Rogge for his help with the numerical compu- 
tations. Special thanks are also due Dr. Neal R. Cholvin, 
Chairman of the Biomedical Engineering Program at lowa 
State University, for many useful discussions related to 
the biomedical aoolications of this studv. This work was 



FLOW CHARACTERISTICS IN MODELS OF ARTERIAL STENOSES 559 

supported by the Engineering Research Institute. Iowa 
State University, through funds made available by Grant 
No. HE 11717 from the National Institutes of Health, 
U.S. Public Health Service. 

REFERENCES 
Daily. J. W., Hankey, W. L., Jr.. Olive, R. W. and 

Jordaan. J. M. (1956) Resistance coefficients for accel- 
erated and decelerated flows through smooth tubes and 
otices. Trans. ASME 78, 107 l- 1077. 

Fry, D. L., Mallos, A. J. and Casper, A. G. T. (1956) 
A catheter tip method for measurement of the instan- 
taneous aortic blood velocity. Circ. Res. 4.627-632. 

Fry, D. L. (1959) Measurement of pulsatile blood flow by 
the computed pressure gradient. Insr. Radio En& 
Trans. Med. Electronics ME-6.259-264. 

Gerrard. J. H. (1971) An experimental investigation of 
pulsatin$turbulent water Row in a tube. J. Fluid Mech. 
46.43-64. 

Linford, R. G. and Ryan, N. W. (1965) Pulsatile flow in 
rigid tubes. J. appl. Physiol. 20, 1078-1082. 

Sarpkaya, T. (1966) Experimental determination of the 
critical Reynolds number for pulsating Poiseuilie flow. 
J. Basic Engr. Trans. ASME 88.589-598. 

Schonfeld, J. C. (1949) Resistance and inertia of the flow 
of liquids in a tube or open canal. Appl. Sci. Res. hl, 
1699197. 

Womersley. J. R. (1955) Method for the calculation of 
velocity, rate of flow and viscous drag in arteries when 
the pressure gradient is known. J. Physiol. 127.553-563. 

NOMENCLATURE 

(1, peak acceleration 
rl cross-sectional area 

A, cross-sectional area of unobstructed tube 
A 1 minimum cross-sectional area of stenosis 

inertial coefficient for straight tube equation 
viscous coefficient for straight tube equation 
dia. of unobstructed tube 
boundary force 
turbulence index (&/A, - 1)?&/2 
inertial index, K,LII,,/rL;,’ 
viscous index, K,/Re, 
added mass coefficient 
turbulence coefficient 
inertial coefficient 
viscous coefficient 
distance between pressure taps 
pressure 
pressure drop 
pressure drop due to steady flow 
discharge 
radial coordinate 
radius of unobstructed tube 
peak Reynolds number, pC/,Dlp 
time 
axial component of velocity 
instantaneous cross-sectional mean velocity in 

unobstructed tube 
amplitude of periodic component of cross-sectional 

mean velocity 
peak value of cross-sectional mean velocity, 

iJ,= u,+Lm 
steady component of cross-sectional mean velocity 
velocity ratio. U/U, 
axial position from throat of stenosis 
half-iength of stenosis 
alpha parameter, R,,V& 
absolute viscosity 
kinematic viscosity 
density of fluid 
characteristic time 
angular frequency of oscillating flow. 


